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Some New 'Results Concerning Random Sets and Fuzzy Sets

I. R. Goodman
Naval Ocean Systems Center

San Diego, CA

This paper is a continuaticn of past work showing direct ccnnecticns between
fuzzy set theory and classical probability theory through the use of random sets.
Mbre specifically:

(1) The Negoita-Ralescu Representation Theorem ccnnecting fuzzy and flou sets has
been extended to characterize those probability spaces which admit arbitrary
prcbability distributions (and arbitrary stochastic processes, more generally)
as the class of all ncr-atomic probability spaces.

(2) A nunber of claracterizaticns has been obtained for the one-point coverage
equivalencies of randon closed intervals with fuzzy sets. This includes the
classes of translation type random intervals, statistically independent end-
point and centering paraireter randm intervals, and nested random intervals.

(3) It is shown that all nested random sets must be of the same form as the canon-
ical random set: SU(A) = A [U,1], where U is uniformly distributed over
[0,1], and as a consequence of this, there is cnly one nested random set ne-
point coverage equivalent to any given fuzzy set A, naimely, Su (A).

(4) The entire solution class for the cne-point coverage problem fcr any given
fuzzy subset A of a finite space X is characterized by being in a cne-to-one,
onto correspondence with a particular ccnvex, closed hyperplane-bounded
subspace R(A) of 1Ra, where .a.-1cardinality of the class of all ordinary sub-
sets of X with two or more distinct elements of X. This result is extended to
the finite multiplp-point coverage problem.

(5) Ehtropy is introduced as a critericn for ordering random sets within the class
S (A) of all ne-point coverage equivalent random sets to a given fuzzy set A.
It is shown that the maximal entropy random set in S (A) is T(A), the random
set whose mebership function process is a statistically independent zero-cne
process with Pr( T(A)(x) = 1) = Pr(x c T(A)) = A(x), for all x c X. Cn the

other hand, the minimal entropy random set within S (A) is much more difficult
to obtain. It is denonstrated that the search for s'xh may be restricted to the
relatively small vertex, set V(A) of R(A). In fact, S u(A) and S(A), the

singlet-n-valued random set correspcnding to the random variable over X having
probability functioenA, Z( A(x)) over all x c X is < 1, always lie in
V(A). Through a sinple exanple, it is shown that at tines .S(A) may achieve
th.- minimum entropy, at other times, S(A) may achieve the ninimum entropy,
and at other Liar-, neither will yield the minimum value.
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Some New Results Concerning Random Sets and Fuzzy Sets
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ABSTRACT

This paper is a continuation of past work showing direct connections between fuzzy set
theory and classical probability theory through the use of random sets. Thus includes char-
actenzations of random intervas one-point-coverageequivalenrt to fuzzy sets. determination of
all nested random sets equivalent to fuzzy sets. the solution of the one- and multiple-point
coverage problems for random sets in finite spaces. and the use of entropy for ordenng random
sets within the class of one-point-cocrage-equivaent ones for any given fuzzy set. Finally. a
connection between random vanables, random sets. and fuzzy sets is pointed out-

INTRODUCTION

During the past few years a number of investigations has been carried out
directly connecting fuzzy sets with random sets 11-41- In addition, there has
been work in interpreting fuzzy sets through subjeci':e probability where in
effect, the membership function value 0A(x) of the fuzzy set A at t X is
considered the same as the probability of a zero-one random variable a iaining
the value one, which is approximated by an experiment [5, 61. Also. it is
appropriate to mention investigations into structures which generalize both
fuzzy set and probabilistic concepts [7-9 and the extensive work concerning
fuzzy probabilities and fuzzy random variables [10, 11]. However, in this paper
only the Frst-mentioned connections between fuzzy sets and probability will be
considered.

A SUMMARY OF THE BASIC RELATIONS BETWEEN FUZZY AND
RANDOM SETS

1. Given any space X and any fuzzy subset A of X with membership
function (A, : X - [0,11, there exist (in general. many) random subsets S(.4) of

'Fkz,,er Science Publishin% Co. Inc 19K4
5' Vandcnbilt Ave.. New York, NY 10017 0020-0255,/S'S0 00



94 I?. GOODMAN

X such that S(A) and A are one-point equivalent, i.e.,

O(x)-Pr(xES(A)). all xE X. (1)

(See [1], [2].) By a random subset S of X is meant the measurable set-valued
mapping S: 0 -9(X) for appropriate choices of probability spaces (Q..Pr)
and (9( X). WPr* S-), where W' is a ci-algebra over some subclass of the
power class P(X) of X which contains at least the classes l'(, of all sets
containing x, for each x Ea X. (See also [12].) Two simple examples of one-
point-equivalent random subsets of X to a given fuzzy subset A are: Su(A) =
0, i'([U, I), where U is a random variable uniformly distti uted over [0.1]; and-
T(A). where the membership function 'T(A), a random Lunction which is
zero-one valued, is such that COrTA1(x) for index x E X is z nutually statistically
independent zero-one stochastic process with

Pr(4T(A,(X)=1) -A(X), allxeX. (2)

In general. S. (A) and T(A) are distinct [unle.ss A is an ordinary subset of X. in
which case necessarily S(A) _ A], the former being a nested random set while
the latter is highly disconnected. (See [1], [21 for various properties.) Note that
the mappings Su(-), T(-): 5,r(X) -. (X) are injective. where F(X) is the
class of all fuzzy subsets of X and q( X') is the class of all random subsets of X.

2. Conversely, given any space X and random subset S of X, there is a
unique fuzzy subset .'(S) of X such that .W(S) and S are one-point-coverage
equivalent: namely, Vd(S) defined by

0,(s,(x) -Pr( X rS) ( - Pr* -( .), all x eX. (3)

3. Combining results I and 2. the one-point coverage mapping .z': q(X)
,"( X) is many-to-one surjective. Recently. some of these results have been

used independently in randomized test and confidence region theory [13].
4' S, and T are special cases of mappings of the form

Y' X 3(X 1 ) -X -q( X,) (well-defined joint random sets). (4)

where marginally Y: "( l, ) --. ( A',) is such that for any .4, )( .',). .( C,)
is one-point-coverage equivalent to .4, wnitten from here on as

(A,) =_ A,.(5)

for all 1 J If X, 9(A) X ) (X) is an ordinary' set operator.
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0 / ) -,( (X) is a fuzzy-set operator, and Y J is as above, a
natural question is to determine if e and * are in an isomorphic-like relation
relative to YD and -, i.e.,

ORalRGX _' ,. (6)

Investigations into the conditions when such relations hold for various classes of
ordinary-set operators, fuzzy-set operators, and mappings Y ' have been car-
ried out [2, 4, 14]. These results provide motivation for the choice of fuzzy-set
operator or operators which extend ordinary set operators. For example, let
J - (1,2}, and let U, and U2 be two random variables each uniformly distrib-
uted over [0,1] with joint distribution K to be specified. Then define ,'
(S,,(),S,,(-)) for K- K,, corresponding to U, -U 2. and for K-K 2 , corre-
sponding to U and U2 being statistically independent. Let r) be ordinary
intersection with X, - X, - X arbitrary fixed. Let (5 be fuzzy-set intersec-
tion defined as follows for j -1,2:

S((7)

0B,,Q c = €, ( X' (8)

for all B. C C .'F(X) and all x E X. It then follows that ) and r) are in an
isomorphic-like relation with respect to Y' and Er- - 1.2. (There are
many other possible definitions for fuzzy-set intersection which lead to isomor-
phic-like relations with ordinary intersection. See 131.)

FURTHER RELATIONS BETWEEN RANDOM SETS AND FUZZY SETS

It is convenient first to establish the following necessary and sufficient
conditions under which a uniformly distributed random variable may be used.
in terms of nonatomic probability spaces and other criteria-

TmiOREM 1. Let -- (02.9 Pr) be a probability space. Define a flou class
= (A , I C . to be a nested class of sets which are nonincreasing inclusion-

wise with respect to the index q and which are continuous with respect to union and
intersection relative to the index a. Then the following statements are equivalent:

1. There is a random vanable U: a1 -- 10,11 uniformlv distribuied.

2. For any probability distribution function F over IR there is a random variable
V: i2 - FI such that V has probabili, distribution function F
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3. There is a flou subclass .W - (A.).E ij.,I of 9 such that for all aE [0,1 J,

Pr( A.) - I- a. (9)

4. f is a nonatorc probability space.

Proof. 1 implies 2: Let

V - F"(U). (10)

%here the pseudoinverse F' is defined by

F ( t) - rufF-'(mnf{ x It < x C= range( F))). (11)

whence for all t ca [0.1], x E R,

F'(t)<x iff t<F(x), (12)

I implies 3: Let

A. -U '([ a. 1) forall a [0,11. (13)

3 impies 1: For all wo r f0, define

U() =sup( ajaE [0,11 & wEA.), (14)

which implies for all a G [0,1]

Pr(U-I([O, a])) - Pr( 2 \ A.) - a. (15)

4 implies 3: Use, e.g., the standard result [15, pp. 168, 174].
3 implies 4: Suppose there is an atom B E @. Then use the continuity of

probability to obtain desired contradiction. U

Thus. from now on, iOr is assumed to be some fixed nonatornic probability
space.

Let A 3 ,(X) be arbitrary. Consider now the mapping S, without regard
to the random variable U That is, define the family of all level sets associated
with A as

lcv A) - (04'1,,l) ° o , (16)
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and ..&v(X) as the collection of all tevel families lev(A) for all A E Y1 (X).
Operations between level families are defined componentwise in terms of
ordinary set operations at each level a, including complements, intersections,
unions, subset relations, functional transforms, projections, etc. Independent of
the random set approach discussed earlier, Negoita and Raescu [16J have
developed isomorphic relations for many of the operations defined over -%( X)
and fuzzy-set operators, analogous to some of the isomorphic-like relations
developed within a random set context as mentioned in point 4 above. These
results may be combined into the following theorem:

THEOREM 2 (16, 11. Let X be any fixed space, and define .-f.'( X) as the
collection of all flou classes of X: s. = (A.)., . C ( X) with A, - X. Then

1 - Y"2( X) =-..e,(X), where for any -d -a',5.( X).

.W - le'( B,, B, (= -F( X), (17)

where

0,,(x) -sup{ ala [0,1] &xEA., allx e- X. (18)

Conversely. if A E YF( X), then lev(A) G .F. (X).
2. Let the collection of all nested random subsets of X be denoted by .A'.( A).

where it is assumed that fo- any S (= . ."(X), range(S) E Y.2"(X). Then .ar(X),

-#( X). and .K ( X) are all bijectively related as in the following diagram:

I- -- FY ( X)

S, -4--q( X)

isomorphisms or isomorphic-like relations hold for all of the abovewnentioned
operations defined over each of the three spaces.

Proof. The only thing new to show is that SU, is surjecuve. Let S be any
nested random subset of X with range(S) = (A,),, 10.11 E -'(X). Thus, there
is a random variable V: 0 - [0,11 such that for all i. E 2. S(u.) - Ab,( By
part I of this theorem.

S( ) = 0-, ([V( ), I]), all 'J2 (19)

Then letting F be the probability distrbution function for V and using the
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proof of Theorem 1, for any x G X,

xES iff V<. 8 ,.,(x) iff F'(U) <A,.... (.x)

iff U F(,,(x)) iff xES.(C), (20)

where

,c(.x) - F(0,.o,,( -x) ) ,  all x e X (21)

Hence, S = S, (in distribution). 0

An immediate consequence of Theorem 2 is that for any A C 5( X), there is
a unique nested random subset of X. S(A) Z A, namely, S(A) - S, (A).

THE ONE-POrNT RANDOM SET COVERAGE PROBLEM

Returning to points 1-3 in the section after the introduction, a basic question
may be posed: Given A E .F( X), what other random subsets -- of X exist
besides S, (A) and T(A) such that S = A" Some results are given in [4), [21,
where a family of random subsets of X is obtained, which includes S, (A) and
T(A) as members, all one-point-coverage-equivalent to a given A. However, this
does not exhaust all possible such randon sets- The problem of determining all
possible random sets one-point-coverage equivalent to a given fuzzy set is called
the one-point-coverage problem. (The problem of determining all random sets
m-point-coverage-equivalent to a given fuzzy set is treated in the following
section.) Let

.YS(A) = { SIS ( q( X) & A = S). (22)

Suppose. from now on, that X is any space with n = card( X) > 3. and order
all 2" sets Cc-9(X) by the order <. where if card(C')<card(C") then
C'< C", and if card(C') - card(C") we determine an arbitrary but fixed and
consistent order also. The notation

(M) M f
, o)= - , j=0. 1.rn

I ~ O =-,,= 2" -n ( 23)

1 0
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will be used, and denoting vector and matrix transposes by supercript Tr. we

define

,K , Tr- (I by a. (24)

f.-(0C(x))CG ,,X.,c1 2 (a. byl), all x G X.

,a. byn) (25)

y'2'(S)=(Pr(S-C))cc..(,-,.;.. 2 (a, by 1), all S c- .R(X) .

(26)

-A)-(pA(x)), (n by 1), r(A) max(( X ,(x)) -l.0

alAE3;(X) (27)

THEOREM 3. For any finite space X (with notanon as above) and any
A C J97'(X):

1. We have

Y,(A) - { SISE (X) & y(i(S) C ,(A)}, (28)

where

A)- W1 W G P' . satsfying (30)-(32)), (29)

for

,r(A) < , W (30)

'4) > T, W (31)

0 <W (32)

2. ? (A) is a closed convex region in R-- having in general I- n + a, = 2"

hyperplane bounds with an uncountable infinity of possible elements y"2 (S) in it.

or equivalent v. S cm Y" (A).
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3. There is a bijective correspondence between Y,1 ( A) and , ( A), where for
any gi-.en W E .R, (A), S G Si (A) is uniquely determined (in distribution) by

(t2)(S) = W, (33)

Pr(S- (x)) PA(x) W, a x C- X. (35)

Define now the vertex set "(A) of R, (A) as the set of all W -(A) such
that equaliv, holds in Equations (30)-(32) for a, uinearly independent columns
of , . . There can be at most

vertex eiements. It ]so follows that for all AG C Y -( X)

(a) We have

van&e( S,(A)) -~ iy( A)1~)J I.. _ (36)

where

range( O )= y A) .....A) y,( A)} O vyt( 4)< -...<y,(A) <1. 137)

Hence,

Pr( S,(A) -C)

J (A)-y,,( A) , if c-;l([y,(A),1]) for j=... 1 r

0 \ yo(A) -0.

0 otherwise,

(38)

and yZ(S,(A))G $"(A), where
T'. :s,(A)) = , p( x) ,{ A), (39)

,E X"

{,4 ( (A)) - A) (4o)

(h) Pr( TA) -C) -(" n )I - 'A x an c (x,
(41)
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and y"'2,(T(A)) G interor(t, (A)) in general, where

Tr 2 i(T ) ) p(x) + Ol [ A( xJ i(A) (42)

and

1- 1x) a]xcX

(43)
(c) It should be noted that the condiuon given in Equation (30) is super-

fluous iff

" ,( , <1 (44)

ie-, <% is either an ordinary probability function [equality holding in (44)] or adeficient probability function finequalitv holding in (44)] over X. in which casea random set S'(A)E 5LY(A), where S'(A) may be identified with a randomvariable over X having 0, as its probability function (possibly deficient). Thus

,'Y"( S'( A)) - (45)

and hence -r 2 (S'(A))s Y'*(A). Also,

Pq S'( A) -0) -I - () (46)

Pr( S'(.4) - -x) O (x). all x ( X. (47)

THE MULTIPLE-POINT RANDOM SET COVERAGE PROBLEM

For any integer m 1> 1, define -q,,,(X) as the collection of all nonvacuous
subsets of X with cardinaliry m Then define

X( ) If ,-,( X) -[0.1] & there is an S .( E ') such that

f(C) =Pr( Cc S). all C E ( X)}

{ / f.Y( Y) [o.l]} (48)
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with, in general, strict subset inclusion holding above. That is. there are
functions -.: 9(_) [0, 11 which are not the m-point-coverage function of some
random subset of X. A simple example of this is generated for the case m - 2
by first noting the basic constraints for any random subset S of X and any
x, Y CX:

max(Pr(x G S)+Pr(y E S)- .0) Pr(( x,y )c S)

< tmn(Pr( x S).Pr( .vS)) (49)

and then choosing, e.g.. any such f with at least some x. y X X such that

rain(J(( x}),f({v ))) <f(( X.y ). (50)

This situation contrasts sharply with the case m = 1. where indeed

5(x) = ,,(X) = (JIf:. 9 1 (X) -. [o.] }1 (51)

abusing notation somewhat in identifying A with (, for any A E 5( X).
In the following discussion. X need not be finite nor even discrete. Clearly.

.,7,(x) (XJ)_.5,3 ,(X) ... D-,5(X) = fl n,2,(.') (52)
j-I

and if for any f E J (7,)(X)

Y._,(f) = ( SS C-( X) & f(C) =Pq C S),all C c ,.,( X)}, (53)

then

Y9,(/ W I,)(U) _2 Y2(1U) :? Y,, ) Q Y, U,() (54)

Letting /( X) be the class of all finite subsets of X,

2,(X) =( f f(X) -. [0.1 & there is an S E=-(X) such that

f( C) = Pr( C C S). all C (X)} 55)

Define also, for any f C . A),

• ,_(]) { SISER( X) &f(C) -Pr(CCS) all CEO/( V)} (56)
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Then gathering all of these definitions together yields the following theorem:

THioREM 4. For any space X:

1. ,,(X) is the class of all doubt measures over ,(X). (See [1], [171.)
2. For any integer m > 1, R,( X) is disjointly partitioned as

-q(X) - U Y, f) (57)

3. For any f G F, X), there is a unique S G R( X) such that

Y ,(/ - ( s/ )} . (58)

and the converse holds if for each S r R( X) we determine the coverage function fs
by

/s( C) - pr( C C- S), all C E 11(X-.)- (59)

4. .,, ( X). R( X), and I( X), the class of all :ero-one stochastic processes

over X. are all in a bijectve relationship as follows:

YX)

where for any S E= R( A-) we have O(S) - (4(x)), . . and p is determined by

the Kolmogorov extension theorem applied to the relattons below.

5. For any V = (V(x)), x - '( X) and any C, D E- O/(X) disjoint,

P ( [ (.,)= I) ["(x - l)-F ( -1)rd~ f, (Cu K)
'.-C K0 C D

(60)

where fC e ..F_ (X) is given. for any B E f( X), by

S( B) Pr( & [V(x)=1l) (61)
C EB

(See [14]) I

Thus in terms of degree of coverages. '( X) and -4( X) represent the
opposite extremes
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Returning to the case for X f-ite, let m I be arbitrarily fixed with
card( X") - n ; 3. Define for any S E ?( X). recalling the total order defined
over -( X).

S)- (Pr( S -C)) I (aE>.. by 1), (62)

a . _ Y ( k (63)

le,.,( X) C B CE Y( X) &card(C) -j),

all C E9(X), 0 .< j-< n. (64)

Also, define for any n>m > r,s)>O and all f E.,,.(X) and CE
Y( X). card(C) - r,

f,,C) -f(C) for s-0, (65)

U C Jf(C)-- (i' +j f( B)), for s >- , (66)
t-1 B E VC,

-  
.

{ iff / is even,
iff j is odd. (67)

THEOREM 5. For any finite space X. with notation as above, for any f
5 ,( A'):

1. We have

Y,.( f S) = { S E ( X) & y"'"( S) A ,(f)}. (68)

where

.R,,) W W R". - satisfying ( 70), (71)). (69)

with

f)', ,(f.c)(- ), C )( " w8 (70)
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for all/C G Y( X) wi th card(C) - m -j. for j -,1. 2.,m

W >_O0 all/B E 9( X) with card( B) >_ m +l1 all/fE 5z,(X); (7 1)

and where

W Wit W 8 e 9(X). ,dBI > .1 eR1"-. (72)

2. is a closed convex region ifl JR'- having, in general.

i-0

hyperplane bounds, and thus, in general, there is an uncountable infinity of
possible 'y" '(S)'s in it, or equivalently SE G Y_,(f)

3. There is a bijective correspondence between Y,,f and 9,,.(f), where

for any given W E- ._(,_) (f ), S E= Y, ,(f ) is uniquely determined by

'y LI - W,(73)

Pr( S - C) - f, C)Ji + 4 )BeX 8

(74)

for all CE 9(X) withcard(C)m -j j- ,1.m.

Out/ine of proofs for Theorems 3 and 5. First obtain Theorem 3 by simply

extending the basic identity in Equation (1) in terms of Pr(S - C)'s together
with the standard probability constraints. and solve in terms of yili(S).

Theorem 5 is obtained by a tedious induction. The key computational identity
useful in the proofs is

for any f S9( X) -. > jk-,t1,anyvCG (X) with casd(C)l 1

USE OF ENTROPY AND OTHER CRITE-RIA FOR
COVERAGE PROBLEMS

Aniother basic problem associated with fuzzy sets, or more generally, multi-

pie-point coverage functions f (E -IF_,X) and random sets SEC Y$,,,(f), Is the
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determination of meaningful criteria for ordering in some sense the elements of
.,.,(/) in terms of "best" representing f. Among natural criteria, should be

mentioned the expected n-volume if X C R, the ppected cardinality if X is
finite, and the entropy. Consider First volume and cardinality. The following

important result must be taken into account. This is based on an earlier result of

Robbins [18] which was also later independendy rediscovered by Pratt [191, and
in turn used by Hooper [131 in demonstrating that most common figures of
merit for randomized test procedures and randomized confidence sets involve

the random sets determining these procedures only through their one-point

coverage functions.

THEOR.EM 6 [18, 19]. Let n be any positive integer, X any space, and
S E f( X) Then (assuming the usual measurabiliry conditions), lettitngfs be the
couerage function of S [see Equation (59)]:

1. If X C R' for some fixed positive integer n and vol,, denotes n-dimensional

Lebesgue measure, then for any m > 1

E( [vol,,(S)])- f...f s(x . . dx dx,. (76)
{xt  . _ )

2. If X is a finite space,

E([card(S)]")= I". fs((x. x,). (77)

Proof. Let g:x9 XW-.IR, where range(S) g_ - R), W'_CR"' and let
A .: f R be a measure relative to the measure space (W'. if. A). Then apply
Fubini's interchange theorem to the integral of g with respect to the joint

measure Pr*S x-, and specialize for g(B.x)- (x-) -0(x,). BG ,
x = (x I ..... x,,,) E IF, with W¢ and sl chosen accordingly, when first A = vol,

(Lebesgue measure) and then - card (counting measure). U

Thus. for any given / E -J. ,,K(X) we have E([vol, (S)]') - constant,, =

1 ... . m. regardless of the S chosen from Y_,,,( X). Thus another criterion must

be sought which is sensitive to variable S - Y,,,( X).
Consider now entropy as a possible criterion. In this paper only the case of

base space X finite will be treated. For any S c R( X). define the entropy for S
analogously to the usual definition for probability functions:

E.nt(S) = F -Pr(S=C)logPr(S= C)- (78)
C f, so e u

The results of Theorem 4. part 4. specialized to this case, yield dually that S
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may be identified with a random vector 0. over the space (0.1 }", assuming
card( X) - n.

THEOREM 7. Let card(X) - n. Then for any A E-Y'(X)

sup (Ent(S))= E -( x)logPA(x)-[1--A(x)] log('--0A(x)]
S EY, (A) re X

(79)

occurring uniquely for S = T( A).

Proof. Either use the fundamental information-theory inequality applied to

4s -which is equivalent to a specialization of the well-known result that given
any marginal probability functions, the joint probability function maximizing
the entropy corresponds to the marginal random variables being statistically
independent-or specialize the exponential family characterization of maximal
entropy to this case (see, e.g., Jaynes [201 for the general case).

On the other hand, the minimal-entropy problem here-poses more diffi-
culties. It can be shown that:

THEOREM 8. Let card(X')- n. Then for any A E-Y'(X)

in! Ent(S) - mm Ent(S). (80)
S r .Y, (A) yl"(S) C ",(A)

Proof. By Theorem 3, part 3, the minimization problem reduces to the
routine minimizing of the sum of a strictly convex function (- x log x) of linear
combinations of components of y( 2)(S) over the region R, (A). U

Even though [see remarks (a) and (c) following Theorem 31 y(2)(Su(A)) E
"K"(A), and if Y., xA(x) <1, then S'(A) is well defimed with y(2,S'(A))E
%', (A). it is not always true that the global minimal entropy occurs for either
one. A simple example illustrates this. Let n - 2 with X - ( x , x , ), and
A G() with OA(xt) < OA(x,). Let h(x)= - xlogx, all x, and define v, =
OA,(x,) and Y2 = A(x2)- Finally, let G(A) - infs ,y, Ent(S). Then:

(i) If T(A) 0 and y2 > ., then

G(A) .- h( v,)+h(y 2 ) 
+

h(
l
- v - y 2 ). (81)

occurnng uniquely for S = S'(A). (Set (45)-(47.)

(ii) If either r(A)- 0 and y, < 1 or T(A)>0and v.>. then

G(A) - h(.v ) + h( y2 - ) + h(1 -y). (82)

occurring uniquely for S = S,.(A).
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(iii) If r(A) > 0 and y, < , then

q(A) - h(i - v1)+ h(1 - )+ h(yI + Y2 - 1). (83)

occurring uniquely for S - S"(A), where S"(A) is determined by

Pr(S"(A) - (x) -1-y _ ,  Pr(S"(A). -{x,) 1 -- y ,

Pr(S"(A)- X)=-(A), Pr S"(A) =0) . (84)

Extensions of the entropy problem to multiple-coverage functions and gen-
eral spaces X have yet to be addressed.

ONE-POfNT-COVERAGE FUNCTIONS AND RANDOM INTERVALS

An important class of random sets is the random intervals.-in this section the
one-point coverage problem is specialized to the case where the base space
X= R, A E537(F), and 9,(A) is replaced by a more restrictive class Y, (A..).
the class of all S E9 such that S -- A, for various classes .9 C_ (R) of random
closed intervals of R.

Define fu-st -21 as the class of all random closed intervals and -2 as the class
of all random closed intervals S with Pr(S - 0 ) = 0. Then:

1. There is a natural identification between .9, and the class of all bivariate
random variables

over the upper half diagonal plane in R2. and between .2, and the class of all
random variables over R2. (See [211 for related results.) From now on, let
S - [V, WI denote a random interval with V and W r.v.'s over P: denote the
marginal probability distribution function for V by F. that for W by F2, the
joint probability distribution function by F. etc. The convention [a. b) = 0 for
a > b will be used.

2. For anyAEG,(R), we have S=[V.W])YG (A. 2,) iff

,A(x)-Fi(x) -F(x.x). all x CR. (85)

the solution of which for F, and F in terms of 0 may be complicated unless P,
is further specified.
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3. Letting .R3 be the class of all random intervais S - (V, W1 with V and W
statistically independent, we have

Pr(S*0)-ff F.(x) dF(x). (86)
xeR

and for any A EY -(R), we have S-[V,W]- ,"(A...2) iff

OA (-X) - F.(x)[ 1- F2( X)]I, all x cP, (87)

which implies that log -OA is of bounded variation with Lr, _ . .(p, (x) - 0.
4. If A ( -,Y(R) is such that OA is unimodal (which will be taken in the sense

that possibly a neighborhood of modal points exists and continuity from the
right holds) at some x0 (say) at which OA (x0) - 1, then S - (V, W] -Y (A .93 ),
where

F.(x) - {4)A(x) if X4 0 " F2 (-X) ()if x<x 0

1 if X 1 -O Oj4 A( X) if X;'X

(88)

5. Let .2, be the class of all random intervals S-[V. W] with V and W
statistically independent and identically distributed. If A C,- Y(R), then
Y, (A.., *0 iff lim ,_ . 4(x)-0 and OA is unimodal at some x, with

OA(xo)< 4 , in which case VY"(A,.4)- (S(A)}, where S(A)-[V.W] is de-
termined by solving Equation (87) for F, - F2 in terms of -OA:

F,( x) = F2 (X) - j ( I - [I -4-A(x)'/ 2 } if x < xo, (89)
S {1 + [1-40A(x)") if >x0-

6. Let 25 be the class of all nested random closed intervals. Then using
Theorem 2.

S (SL ( A) I A E .- ( R ) & (0, is continuous and either ummodal.

nonincreasing, or nondecreasing over R) . (90)

where a-s usual U is a Fixed random vanable uniformlv distributed over (0. 1
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Also, for any A E .5F(R) with (p, continuous and either unimodal, nonin-
creasing, or nondecreasing. ', (A, .9) - (St (A)}, where it should be noted
that

f A -oc,supOA-( U)] if -P, is nonincreasing.

S linf ' -(U), oo] if 0, is nondecreasing.

In a related vein, note that if 0, is any probability distribution function over
I? corresponding to random variable Z say, then Z can be identified with
'4t(U) (see Theorem 1). Su(A) - [Z, + o), and

OA(x)-ZPr(Z x)-Pr(x(=Z,-oo)). all xeP. (92)

Two more interesting classes of random intervals remain to be discussed.

T-EOREM '9. Let .6 denote the class of all fixed-length random closed inter-
vals. Let A E _F (R). Then Y,' (A, 26) * 0 iff there exists a proba olity distribution
function FA and a positive real constant bA such that for all x e X,

'PA(x) - FA( x + bA)- FA( x - b) (93)

iff c. is integrable over R, where we define

2bA - (x) dx (94)

and FA wirt

F(x+(2k+l)b,)= OA x+(x21 b4 ),
I- -00

allx EO.2b,]. k=0,+1._±2..... (95)

is a legitimate probability distribution function, in which case Y,(A.2.9) = (S(A)).

where

S( A) = [V- b,. V - b,]. (96)

where V is a random variable having probabilit distribution function F.

THEORE-M 10. Let -97 denote the class of random closed intervals of the form
S [V -- W . V + W, 1, where V is a random variable over R statisticallv indepen-
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dent of random variables W, and W, jointly defined over R x R'. Then for any
A Er Y(). Y,(A.. 7) * 0 iff

OA- .A () GA - (97)

wheref, :I -- [0.1] Ls uimodal at 0 with fA (0) - 1, lim, fA(x)-0, GA is

some probability distribution function over I2, and (j denotes the convolution
operator: in which case S(A)-[V- W,V+ W,E9rY(A,.9,), where V has
probabthty distribution function GA, W has probability distribution function
1 - fA ( - -) over R , and W2 has probability distribution function 1 - fA (-) over
I?-, with W1, W2 jointly arbitrary and statistically independent of V. a

It follows. e.g.. from [221, that any A E -5(R) for which OA is uniformly
continuous and integrable over R may be arbitrarily uniformly closely ap-
proximated, in the one-point-coverage sense, up to some scalar multiple, by
some S in .2,. (Approximate (A by cOf(jG, where c- co/[(27r)1 2o, cO =

L. . ,( x)dx, and f -(2ir) 1 . 2af, f. being the probability density function for
Gautssian distribution N(0, a ) .)

A CONNECTION BETWEEN FUZZY SETS, RANDOM SETS. AND
RANDOM VARIABLES

So far in this paper, connections have been established between the member-
ship functions of fuzzy sets and the one-point coverage functions of random
sets. Recently (23] it has been shown that random variable evaluation functions
may also be directly related to membership functions and one-point coverage
functions. This result is restated.

If Y is any space of elementary events and .q C Y(Y) is any collection of
compound or elementary events for a random variable V over Y (i.e., 9 C _W",
the a-algebra over Y for V), then the function g, :- - [0, 1J, where for any
B F .? we have g,(B) = Pr( V E B). is called the evaluation function for V over
the event collection .. Recall the notation fs for the one-point coverage
function for any S r I(X) for any space X.

T1HORLEM 11 [23].

1 Let X be any space and S e 9(X). Then X may be identified as a collection
of events q for some random variable V over (say) Y such that

S - Wl V) (98)

and whose evaluation function over iV is the same as f
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2. Let V be any random variable over (say ) Y. and i any collection of events
for V Then, letting X - I and defining S by Equation (98), the evaluation g, for
V over -4 coincides with fs.

3. Let X be any space, and let A E .F( X) be arbitrarv. Let S E £( X) be
arbitrarv with S - Y ' (A), such as Su (A), T( A), for example. Then applying part
1 above, X may be identified as a collection of events i for some random variable
V over (say') Y such that Equation (98) holds and '4). fs, and g, all coincide.
That is, an)' fuzzy set is one-point-equivalent to the evaluation function of suitablh
chosen random variables over event collections. a

One consequence of Theorem 11 is a new interpretation for possibilities, or
equvzlently, values 0 4 (x) for x E X, where A G _F(X) is given,through the
membership function ',4: X - [0,11: For any .x rE X.

Possibihtyof x(A-Poss(x-A) - Pr xCS(A)) -Pr(V(A)Gx). (99)

and since the events x (- X can also be considered compound or elementary
events for V(A) over Y which may well be overlapping and perhaps exhaustive.
possibilities need not sum to unity when X is discrete. Ho'iever, when-and
only %hen- OA is an ordinary or deficient probability function, possibilities will
sum to unity or to less than unity, possibilities and probabilities coincide, and
the events for V(A) are all necessanly elementary and disjoint, with V(A) and
S( .4) also being identifiable.

r'hi cu--hor wi..hre to th:rmk: Pmfe'asvor s. r. mg9'a"' , //,ew ,"t_.co St.ate Vhrivap.ity,

for p,7ein out the papers of Robbina, Prort. and "epj.r, a uZZ as for joful
.wnetas; X. C. idw-ic'a of I.O.S.C. for vrah,abLa er-'tictas; and the R/ZlrE Offfe4.

f.O.S.C., for its auport of th. c .or.
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